
  

Welcome to CS103!

● Handouts!
● Course Syllabus

● Today:
● Course Overview
● Introduction to Set Theory
● The Limits of Computation



  

Are there “laws of physics”
in computer science?



  

Introduction to Set Theory



  

Key Questions in CS103

● What problems can you solve with a 
computer?
● Computability Theory

● Why are some problems harder to solve 
than others?
● Complexity Theory

● How can we be certain in our answers to 
these questions?
● Discrete Mathematics



  

Instructor
Amy Liu (liuamyj@cs.stanford.edu)

 

TAs
Hugo Valdivia (hugov65@stanford.edu)

Amanda Spyropoulos
Gili Rusak

Teresa Noyola
 

Staf Email List: cs103-sum1819-staf@lists.stanford.edu



  

https://cs103.stanford.edu

Course Website

https://cs103.stanford.edu/


  

Prerequisite / Corequisite

CS106B
The problem sets throughout the 

quarter will have some 
programming assignments. We’ll 
also reference some concepts 
from CS106B/X, particularly 

recursion, throughout the quarter.

The problem sets throughout the 
quarter will have some 

programming assignments. We’ll 
also reference some concepts 
from CS106B/X, particularly 

recursion, throughout the quarter.
There aren't any math 
prerequisites for this 
course – high-school 

algebra should be enough!

There aren't any math 
prerequisites for this 
course – high-school 

algebra should be enough!



  

Problem Set 0

● Your frst assignment, Problem Set 0, 
goes out today. It’s due Friday at 
3:00PM.
● You’ll need to get your development 

environment set up, though there’s no actual 
coding involved.

● We hope you have fun with this one – you’ll 
learn some cool party tricks as you work 
through the assignment. ☺



  

Recommended Reading



  

Online Course Notes



  

Grading



  

Problem 
Sets

 

Final Exam

Grading

Eight Problem Sets

Problem sets may be 
completed individually or 

in pairs.

Eight Problem Sets

Problem sets may be 
completed individually or 

in pairs.



  

Problem 
Sets

 

Final Exam

Grading

Final Exam

Friday, August 16th

7PM – 10PM

Final Exam

Friday, August 16th

7PM – 10PM



  

How to Succeed in CS103



  

Proof-Based Mathematics

  

● Most high-school math classes – with the 
exception of geometry – focus on calculation.

● CS103 focuses on argumentation.
● Your goal is to see why things are true, not 

check that they work in a few cases.
● Be curious! Ask questions. Try things out on 

your own. You'll learn this material best if you 
engage with it and refuse to settle for a “good 
enough” understanding.



  

Mental Traps to Avoid

● “Everyone else has been doing math since 
before they were born and there is no way 
I'll ever be as good as them.”

● “A small minority of people are math 
geniuses and everyone else has no chance 
at being good at math.”

● “Being good at math means being able to 
instantly solve any math problem thrown at 
you.”
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“A little slope makes up for a lot of y-intercept.”
   - John Ousterhout        
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Mental Traps to Avoid

“Everyone else has been doing math since 
before they were born and there is no way 
I'll ever be as good as them.”

● “A small minority of people are math 
geniuses and everyone else has no chance 
at being good at math.”

“Being good at math means being able to 
instantly solve any math problem thrown at 
you.”



  

Pro Tip #1:

Never Confuse Experience for Talent



  

Pro Tip #2:

Have a Growth Mindset



  

Fun Math Question

Suppose you improve at some skill at a rate 
of 1% per day. How much better at that 
skill will you be by the end of the year?

After one day, you're 1.01 times better.
After two days, you're (1.01)2 times better.

After one year, you'll be
(1.01)365 ≈ 37.8 times better! 
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Mental Traps to Avoid

“Everyone else has been doing math since 
before they were born and there is no way 
I'll ever be as good as them.”

“A small minority of people are math 
geniuses and everyone else has no chance 
at being good at math.”

● “Being good at math means being able to 
instantly solve any math problem thrown at 
you.”



  

Simple Open Problems

● Math is often driven by seemingly simple 
problems that no one knows the answer to.

● Example: the integer brick problem:

 

 

Is there a rectangular brick where any line 
connecting two corners has integer length?

● Having open problems like these drives the 
feld forward – it motivates people to fnd new 
discoveries and to invent new techniques.

?



  

My Advice

●  Question everything!
●  Come to lecture :) 
●  Study strategically and intentionally
●  Stay on top of the material and actively  
patch any holes in your understanding

●  Persevere, but know when to get help



  

We've got a big journey ahead of us.

Let's get started!



  

“The chemical elements”
“Cute animals”

“Cool people”

“US coins”

“All the computers on the
Stanford network”

“CS103 students”



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).
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Two sets are equal when they have exactly 
the same contents, ignoring order.
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Two sets are equal when they have exactly 
the same contents, ignoring order.
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These are 
the same 

set!

These are 
the same 

set!



  

Sets cannot contain the same object twice. 
Repeated elements are ignored.



  

Sets cannot contain the same object twice. 
Repeated elements are ignored.

,



  

Sets cannot contain the same object twice. 
Repeated elements are ignored.

,

, , , , ,



  

Sets cannot contain the same object twice. 
Repeated elements are ignored.
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These are the 
same set!

These are the 
same set!



  

Ø
We use this symbol 

to denote the empty 
set.

The empty set 
contains no 
elements.

=



  



  

Are these objects equal to one another?

1 1≟

This is a 
number.
This is a 
number.

This is a set. 
 It contains 
a number.

This is a set. 
 It contains 
a number.
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Are these objects equal to one another?

Ø Ø≟

This set contains 
nothing at all.

This set contains 
nothing at all.

This set has one 
element, which 
happens to be 
the empty set.

This set has one 
element, which 
happens to be 
the empty set.
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Ø Ø≠
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Membership
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Membership
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Is          in this set?
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Membership
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Is           in this set?
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Set Membership

● Given a set S and an object x, we write

x ∈ S

if x is contained in S, and

x ∉ S 

otherwise.
● If x ∈ S, we say that x is an element of S.
● Given any object x and any set S, either 

x ∈ S or x ∉ S.



  

Infnite Sets

● Some sets contain infnitely many elements!
● The set ℕ = { 0, 1, 2, 3, …} is the set of all the 

natural numbers.
● Some mathematicians don't include zero; in this 

class, assume that 0 is a natural number.
● The set ℤ = { …, -2, -1, 0, 1, 2, … } is the set of 

all the integers.
● Z is from German “Zahlen.”

● The set ℝ is the set of all real numbers.
● e ∈ ℝ, π ∈ ℝ, 4 ∈ ℝ, etc.



  

Describing Complex Sets

● Here are some English descriptions of 
infnite sets:

“The set of all even natural numbers.”

“The set of all real numbers less than 137.”

“The set of all negative integers.”
● To describe complex sets like these 

mathematically, we'll use set-builder 
notation.



  

{ n | n ∈ ℕ and n is even }

Even Natural Numbers



  

{ n | n ∈ ℕ and n is even }

Even Natural Numbers



  

{ n | n ∈ ℕ and n is even }

The set of all n

Even Natural Numbers



  

{ n | n ∈ ℕ and n is even }

The set of all n

Even Natural Numbers

where



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

Even Natural Numbers

where



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

and n is even

Even Natural Numbers

where



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }



  

Set Builder Notation

● A set may be specifed in set-builder notation:

{ x | some property x satisfes }
● For example:

{ r | r ∈ ℝ and r < 137 }

{ n | n is an even natural number }

{ S | S is a set of US currency }

{ a | a is cute animal }

{ r ∈ ℝ | r < 137 }

{ n ∈ ℕ | n is odd }



  

Combining Sets



  

Venn Diagrams

A B
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3

A = { 1, 2, 3 }
B = { 3, 4, 5 }
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Venn Diagrams
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Venn Diagrams
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Venn Diagrams

A B

A ∪ B

1
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4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }



  

Venn Diagrams
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Venn Diagrams

A B

A ∩ B
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Intersection

{ 3 }



  

Venn Diagrams

A B
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A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

A – B
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A = { 1, 2, 3 }
B = { 3, 4, 5 }

Diference

{ 1, 2 }



  

Venn Diagrams

A B
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A = { 1, 2, 3 }
B = { 3, 4, 5 }

Diference

{ 1, 2 }



  

Venn Diagrams
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Venn Diagrams

A B

A Δ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Diference

{ 1, 2, 4, 5 }



  

Venn Diagrams

A B

A Δ B



  

Venn Diagrams



  

Venn Diagrams for Three Sets



  

Venn Diagrams for Three Sets



  

Venn Diagrams for Four Sets

A

B C

D

Question to ponder: 
why don't we just 
draw four circles?

Question to ponder: 
why don't we just 
draw four circles?



  

Venn Diagrams for Five Sets



  

Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

http://moebio.com/research/sevensets/


  

Subsets and Power Sets



  

Subsets

● A set S is called a subset of a set T 
(denoted S ⊆ T) if all elements of S are 
also elements of T.

● Examples:
● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● { b, c } ⊆ { a, b, c, d }
● { H, He, Li } ⊆ { H, He, Li }
● ℕ ⊆ ℤ   (every natural number is an integer)
● ℤ ⊆ ℝ   (every integer is a real number)



  

Subsets and Elements

{2}

2

Set S
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Subsets and Elements
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Subsets and Elements

{2}

2

Set S

∈ S2



  

Subsets and Elements

{2}

2

Set S

∈ S{2}



  

Subsets and Elements
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Subsets and Elements
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Subsets and Elements

{2}

Set S
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Subsets and Elements

{2}

2

Set S

⊆ S
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Subsets and Elements

{2}

2

Set S

⊆ S
(Since 2 
isn't a 
set.)

(Since 2 
isn't a 
set.)



  

Subsets and Elements

● We say that S ∈ T if, among the elements of T, one 
of them is exactly the object S.

● We say that S ⊆ T if S is a set and every element 
of S is also an element of T. (S has to be a set for 
the statement S ⊆ T to be true.)

● Although these concepts are similar, they are not 
the same! Not all elements of a set are subsets of 
that set and vice-versa.

● We have a resource on the course website, the 
Guide to Elements and Subsets, that explores this 
in more depth.



  

What About the Empty Set?

● A set S is called a subset of a set T 
(denoted S ⊆ T) if all elements of S are 
also elements of T.

● Are there any sets T where Ø ⊆ T?
● Equivalently, is there a set T where the 

following statement is true?

“All elements of Ø are
also elements of T”

● Yes! In fact, this statement is true for 
every set T!



  

Vacuous Truth

● A statement of the form

“All objects of type P
are also of type Q”

is called vacuously true if there are no objects of 
type P.

● Vacuously true statements are true by defnition. 
This is a convention used throughout mathematics.

● Some examples:
● All unicorns are pink.
● All unicorns are blue.
● Every element of Ø is also an element of T.



  

Subsets and Elements

{2}

2

Set S



  

Subsets and Elements
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Subsets and Elements
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Subsets and Elements

{2}

2

Set S

Ø  ∉  S



  

Subsets and Elements

{2}

2

Set S

Ø  ∉  S



  

,,,,

,S = 

℘(S) = 

This is the power set of S, the set of 
all subsets of S. We write the power 

set of S as (℘ S).
 

Formally, (℘ S) = { T | T ⊆ S }.
(Do you see why?)

This is the power set of S, the set of 
all subsets of S. We write the power 

set of S as (℘ S).
 

Formally, (℘ S) = { T | T ⊆ S }.
(Do you see why?)

Ø



  

What is (Ø)?℘

Answer: {Ø}

Remember that Ø ≠ {Ø}!



  

Let’s take a quick 5 minute break!



  

Cardinality



  

Cardinality

● The cardinality of a set is the number of 
elements it contains.

● If S is a set, we denote its cardinality by 
writing |S|.

● Examples:
● |{38, 31}| = 2
● |{{a, b}, {c, d, e, f, g}, {h}}| = 3
● |{1, 2, 3, 3, 3, 3, 3}| = 3
● |{ n ∈ ℕ | n < 137 }| = 137



  

The Cardinality of ℕ

● What is |ℕ|?
● There are infnitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infnitely large.
● We need to introduce a new term.
● Defnition: |ℕ| = ℵ0

● Pronounced “Aleph-Zero” or “Aleph-Null”



  

The Cardinality of ℕ

● What is |ℕ|?
● There are infnitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infnitely large.
● We need to introduce a new term.
● Let's defne ₀ℵ  = |ℕ|.

● ₀ ℵ is pronounced “aleph-zero,” “aleph-
nought,” or “aleph-null.”



  

Consider the set

S = { n | n ∈ ℕ and n is even }

What is |S|?



  

How Big Are These Sets?

, , ,

, ,,



  

How Big Are These Sets?

, , ,

, ,,



  

Comparing Cardinalities

● By defnition, two sets have the same size 
if there is a way to pair their elements of 
without leaving any elements uncovered.

● The intuition:

, , ,
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Comparing Cardinalities

● By defnition, two sets have the same size 
if there is a way to pair their elements of 
without leaving any elements uncovered.

● The intuition:

, , ,
Everything has 
been paired up, 

and this one is all 
alone.

Everything has 
been paired up, 

and this one is all 
alone.

,,



  

Infnite Cardinalities
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Infnite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 10 12 14 16 ...

n ↔ 2n

S = { n | n ∈ ℕ and n is even }

|S| = |ℕ| = ₀ℵ

ℕ

S



  

Infnite Cardinalities

0 1 2 3 4 5 6 7 8 ...

... -3 -2 -1 0 1 2 3 4 ...

ℕ

ℤ
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Infnite Cardinalities

0 1 2 3 4 5 6 7 8 ...

... -3 -2 -1

ℕ

ℤ 0 1 2 3 4 ...

Pair nonnegative integers with even natural numbers.
  n ↔  -(n + 1) / 2 (if n is odd)



  

Infnite Cardinalities
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  n ↔  -(n + 1) / 2 (if n is odd)
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Infnite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.

|ℕ| = |ℤ| = ℵ0



  

Important Question:

Do all infnite sets have
the same cardinality?
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,S = 

℘(S) = 
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, ,

Ø

, , ,
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|S| < | (S)|℘



  

S = {a, b, c, d}

℘(S) = {
Ø,

{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
{a, b, c, d}

}

|S| < | (℘ S)|



  

If |S| is infnite, what is the
relation between |S| and | (℘ S)|?

Does |S| = | (℘ S)|?



  

If |S| = | (℘ S)|, we can pair up the elements 
of S and the elements of (℘ S) without 

leaving anything out.

What might this correspondence look like?
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If |S| = | (℘ S)|, we can pair up the elements 
of S and the subsets of S without

leaving anything out.

What might this correspondence look like?



  

If |S| = | (℘ S)|, we can pair up the elements 
of S and the subsets of S without

leaving anything out.



  

If |S| = | (℘ S)|, we can pair up the elements 
of S and the subsets of S without

leaving anything out.

What would that look like?



  

x₀

x₁

x₂

x₃

x₄

x₅

… …

x₀ x₂ x₄ …, , ,

x₃ x₅ …, ,

x₀ x₁ x₂ x₅ …,,,,

x₁ x₄ …, ,

…x₂,

x₀ x₅ …x₄, , ,



  

x₀

x₁

x₂

x₃

x₄

x₅

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₁ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

……

,

x₄

x₂

, ,

, ,

,,,,

, ,

,

, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …



  

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…



  

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

x₀ x₂ x₅ …, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

“Flip” this set. 
Swap what’s 
included and 

what’s 
excluded.

“Flip” this set. 
Swap what’s 
included and 

what’s 
excluded.

…x₁ x₃ x₄, , ,

x₀

x₁

x₂

x₃

x₄

x₅

…



  
…x₁ x₃ x₄, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

x₀

x₁

x₂

x₃

x₄

x₅

…

x₀



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,x₁,

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,

x₂

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,x₃,

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,x₄,

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,

x₅

x₀

x₁

x₂

x₃

x₄

x₅

…



  
x₀ x₂ x₅ …, , ,

x₀ x₁ x₂ x₃ x₄ x₅ …

…

x₀ x₂ x₄ …

x₃ x₅ …

x₀ x₂ x₅ …

x₁ x₄ …

…

x₀ x₅ …

…… … … … …

,

x₄

x₂

, ,

, ,

,,,

, ,

,

, , ,

Which element 
is paired with 

this set?

Which element 
is paired with 

this set?

…x₁ x₃ x₄, , ,

...

...

x₀

x₁

x₂

x₃

x₄

x₅

…



  

The Diagonalization Proof

● No matter how we pair up elements of S and 
subsets of S, the complemented diagonal won't 
appear in the table.

● In row n, the nth element must be wrong.
● No matter how we pair up elements of S and 

subsets of S, there is always at least one subset 
left over.

● This result is Cantor's theorem: Every set is 
strictly smaller than its power set:

If S is a set, then |S| < | (℘ S)|.    



  

Infnite Cardinalities

● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘

| (ℕ)| < | ( (ℕ))|℘ ℘ ℘

| ( (ℕ))| < | ( ( (ℕ)))|℘ ℘ ℘ ℘ ℘

| ( ( (ℕ)))| < | ( ( ( (ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…     
● Not all infnite sets have the same size!

● There is no biggest infnity!

● There are infnitely many infnities!



  

What does this have to do
with computation?



  

“The set of all computer programs”

“The set of all problems to solve”



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings.

● There are at least as many problems as there 
are sets of strings.

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

A string is a sequence of characters.

We're going to prove the following results:
● There are at most as many programs as there 

are strings.

There are at least as many problems as there 
are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



  

Strings and Programs

● The source code of a computer program is just a 
(long, structured, well-commented) string of text.

● All programs are strings, but not all strings are 
necessarily programs.

All possible
programs

All possible
strings

|Programs| ≤ |Strings|



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings.

● There are at least as many problems as there 
are sets of strings.

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings. ✓

● There are at least as many problems as there 
are sets of strings.

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

There are at most as many programs as there 
are strings. ✓

● There are at least as many problems as there 
are sets of strings.

This leads to some incredible results – we'll 
see why in a minute!



  

Strings and Problems

● There is a connection between the number 
of sets of strings and the number of 
problems to solve.

● Let S be any set of strings. This set S gives 
rise to a problem to solve:

Given a string w, determine whether w ∈ S.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { "a", "b", "c", …, "z" }
● From this set S, we get this problem:

Given a string w, determine whether
w is a single lower-case English letter.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { "0", "1", "2", …, "9", "10", "11", ... }
● From this set S, we get this problem:

Given a string w, determine whether
w represents a natural number.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { p | p is a legal C++ program }
● From this set S, we get this problem:

Given a string w, determine whether
w is a legal C++ program.



  

Strings and Problems

● Every set of strings gives rise to a unique 
problem to solve.

● Other problems exist as well.

Problems
formed from

sets of strings

All possible
problems

|Sets of Strings| ≤ |Problems|



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings. ✓

● There are at least as many problems as there 
are sets of strings.

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings. ✓

● There are at least as many problems as there 
are sets of strings. ✓

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

There are at most as many programs as there 
are strings. ✓

There are at least as many problems as there 
are sets of strings. ✓

● This leads to some incredible results – we'll 
see why in a minute!



  

Where We're Going

A string is a sequence of characters.

We're going to prove the following results:

There are at most as many programs as there 
are strings. ✓

There are at least as many problems as there 
are sets of strings. ✓

● This leads to some incredible results – we'll 
see why in a minute! right now!



  

Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs|    |Strings| | (Strings)|℘ |Problems| ≤ ≤    <



  

|Programs| < |Problems|

Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.



  

|Programs| < |Problems|

There are more problems to
solve than there are programs

to solve them.



  

It Gets Worse

● Using more advanced set theory, we can 
show that there are infnitely more 
problems than solutions.

● In fact, if you pick a totally random 
problem, the probability that you can 
solve it is zero.

● More troubling fact: We've just shown 
that some problems are impossible to 
solve with computers, but we don't know 
which problems those are!



  

We need to develop a more nuanced 
understanding of computation.



  

Where We're Going
● What makes a problem impossible to solve 

with computers?
● Is there a deep reason why certain problems can't be 

solved with computers, or is it completely arbitrary?
● How do you know when you're looking at an 

impossible problem?
● Are these real-world problems, or are they highly 

contrived?
● How do we know that we're right?

● How can we back up our pictures with rigorous 
proofs?

● How do we build a mathematical framework for 
studying computation?



  

Next Time

● Mathematical Proof
● What is a mathematical proof?
● How can we prove things with certainty?
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